The role of vascular myoglobin in nitrite-mediated blood vessel relaxation

نویسندگان

  • Julian O.M. Ormerod
  • Houman Ashrafian
  • Abdul R. Maher
  • Sayqa Arif
  • Violetta Steeples
  • Gustav V.R. Born
  • Stuart Egginton
  • Martin Feelisch
  • Hugh Watkins
  • Michael P. Frenneaux
چکیده

AIMS This work investigates the role of myoglobin in mediating the vascular relaxation induced by nitrite. Nitrite, previously considered an inert by-product of nitric oxide metabolism, is now believed to play an important role in several areas of pharmacology and physiology. Myoglobin can act as a nitrite reductase in the heart, where it is plentiful, but it is present at a far lower level in vascular smooth muscle-indeed, its existence in the vessel wall is controversial. Haem proteins have been postulated to be important in nitrite-induced vasodilation, but the specific role of myoglobin is unknown. The current study was designed to confirm the presence of myoglobin in murine aortic tissue and to test the hypothesis that vascular wall myoglobin is important for nitrite-induced vasodilation. METHODS AND RESULTS Aortic rings from wild-type and myoglobin knockout mice were challenged with nitrite, before and after exposure to the haem-protein inhibitor carbon monoxide (CO). CO inhibited vasodilation in wild-type rings but not in myoglobin-deficient rings. Restitution of myoglobin using a genetically modified adenovirus both increased vasodilation to nitrite and reinstated the wild-type pattern of response to CO. CONCLUSION Myoglobin is present in the murine vasculature and contributes significantly to nitrite-induced vasodilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk between Nitrite, Myoglobin and Reactive Oxygen Species to Regulate Vasodilation under Hypoxia

The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reduc...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation.

BACKGROUND Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contri...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Relaxatory Effect of Gamma-Aminobutyric Acid (GABA) is Mediated by Same Pathway in Diabetic and Normal Rat Mesenteric Bed vessel

Objective(s) Diabetes related dysfunction of resistance vessels is associated with vascular occlusive diseases. Vasorelaxant agents may have a role in control of diabetic cardiovascular complications. Gamma aminobutyric acid (GABA) has demonstrated to cause vasorelaxation. The present study was designed to determine i) the vasorelaxatory effect of GABA on diabetic vessels and ii) the role of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2011